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Fig. 1: Overview. (a) Our proposed framework HoST enables the humanoid robot to learn standing-up control via reinforcement learning without prior data,
where the robot can successfully stand up across diverse postures in both laboratory and outdoor environments. (b) HoST also demonstrates strong robustness
to many environmental disturbances, including external forces, stumbling blocks, 12kg payload, and challenging initial postures.

Abstract—Standing-up control is crucial for humanoid robots,
with the potential for integration into current locomotion and
loco-manipulation systems, such as fall recovery. Existing ap-
proaches are either limited to simulations that overlook hard-
ware constraints or rely on predefined ground-specific motion
trajectories, failing to enable standing up across postures in real-
world scenes. To bridge this gap, we present HoST (Humanoid
Standing-up Control), a reinforcement learning framework that
learns standing-up control from scratch, enabling robust sim-
to-real transfer across diverse postures. HoST effectively learns
posture-adaptive motions by leveraging a multi-critic architecture
and curriculum-based training on diverse simulated terrains. To
ensure successful real-world deployment, we constrain the motion
with smoothness regularization and implicit motion speed bound
to alleviate oscillatory and violent motions on physical hardware,
respectively. After simulation-based training, the learned control

policies are directly deployed on the Unitree G1 humanoid robot.
Our experimental results demonstrate that the controllers achieve
smooth, stable, and robust standing-up motions across a wide
range of laboratory and outdoor environments (Fig. 1). Videos
are available on our project page.

I. INTRODUCTION

Can humanoid robots stand up from a sofa, walk to a

table, and pick up coffee, seamlessly like humans? Fortunately,

recent advancements in humanoid robot hardware and control

have enabled significant progress in bipedal locomotion [38,

26, 28, 54] and bimanual manipulation [5, 24, 9, 16], allowing

robots to navigate environment and interact with objects

effectively. However, the fundamental capability—standing-
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up control [43, 17]—remains underexplored. Most existing

systems assume the robots start from a pre-standing posture,

limiting their applicability to many scenes, such as transition-

ing from a seated position or recovering after a loss of balance.

We envision that unlocking this standing-up capability would

broaden the real-world applications of humanoid robots. To

this end, we investigate how humanoid robots can learn to

stand up across diverse postures in real environments.

A classical approach for this control task involves tracking

handcrafted motion trajectories through model-based motion

planning or trajectory optimization [17, 18, 22, 43]. Although

effective in generating motions, these methods require exten-

sive tuning of analytical models and often perform subopti-

mally in real-world settings with external disturbances [29,

23] or inaccurate actuator modeling [15]. Besides, real-time

optimization on the robot makes these methods computa-

tionally intensive, prompting workarounds such as reduced

optimization precision or offload computations to external

machines [34, 8], though both are with practical limitations.

Reinforcement learning (RL) offers an alternative effective

framework for humanoid locomotion and whole-body con-

trol [36, 13, 4, 53], benefiting from minimal modeling assump-

tions. However, compared to these tasks that partially decou-

ple upper- and lower-body dynamics, RL-based standing-up

control involves a highly dynamic and synergistic maneuver

on both halves of the body. This complex maneuver features

time-varying contact points [17], multi-stage motor skills [29],

and precise angular momentum control [11], making RL ex-

ploration challenging. Although predefined motion trajectories

can guide RL exploration, they are typically limited to ground-

specific postures [35, 36, 51, 12], leaving the scalability to

other postures unclear. Conversely, training RL agents from

scratch with wide explorative strategies on the ground can

lead to violent and abrupt motions that hinder real-world

deployment [46], particularly for robots with many actuators

and wide joint limits. In summary, learning posture-adaptive,

real-world deployable standing-up control with RL remains an

open problem (see Table I).

In this work, we address this problem by proposing HoST,

an RL-based framework that learns humanoid standing-up con-

trol across diverse postures from scratch. To enable posture-

adaptive motion beyond the ground, we introduce multiple

terrains for training and a vertical pull force during the initial

stages to facilitate exploration. Given the multiple stages of the

task, we adopt multi-critic RL [33] to optimize distinct reward

groups independently for a better reward balance. To ensure

real-world deployment, we apply smoothness regularization

and motion speed constraints to mitigate oscillatory and vio-

lent motions. Our control policies, trained in simulation [31]

with domain randomization [48], can be directly deployed on

the Unitree G1 humanoid robot. The resulting motions, tested

in both laboratory and outdoor environments, demonstrate high

smoothness, stability, and robustness to external disturbances,

including forces, stumbling blocks, and heavy payloads.

We overview the real-world performance of our controllers

in Fig. 1 and summarize our core contributions as follows:

TABLE I: Comparison with existing methods on standing-up control.

Method
Real

Robot
w/o Prior
Trajectory

Beyond

Ground

High

DoF

1-stage

Training

Peng et al. [36] % % % ! %

Yang et al. [51] % % % ! !

Tao et al. [46] % ! % ! %

Haarnoja et al. [12] ! % % ! !

Gaspard et al. [10] ! ! % % !

HoST (ours) ! ! ! ! !

• Real-world posture-adaptive motions are well achieved

through our proposed RL-based method, without relying on

predefined trajectories or sim-to-real adaptation techniques.

• Smoothness, stability, and robustness are consistently

demonstrated by our learned control policies, even under

challenging external disturbances.

• Evaluation protocols are elaborately designed to analyze

standing-up control comprehensively, aiming to guide fu-

ture research and development in this control task.

II. RELATED WORK

A. Learning Humanoid Standing-up Control

Classical approaches to standing-up control rely on tracking

handcrafted motion trajectories through model-based opti-

mization [17, 18, 22, 43]. While effective, these methods are

computationally intensive, sensitive to disturbances [29, 23],

and require precise actuator modeling [15], limiting their

real-world applicability. In contrast, RL-based methods learn

control policies with minimal modeling assumptions, either

by leveraging predefined motion trajectories to guide explo-

ration [35, 36, 51, 12] or employing exploratory strategies to

learn from scratch [46]. However, none of these methods have

demonstrated real-world standing-up motion across diverse

postures. Our proposed RL framework addresses these limita-

tions by achieving posture adaptivity and real-world deploy-

ability without predefined motions, enabling smooth, stable,

and robust standing-up across a wide range of laboratory and

outdoor environments.

B. Reinforcement Learning for Humanoid Control

Reinforcement learning (RL) has been effectively applied

to various humanoid control tasks, showcasing its versatility

and effectiveness. For example, RL has enabled humanoid

robots to achieve robust locomotion on diverse terrains [38,

26, 54, 28], whole-body control for expressive human-like

motions [35, 36, 13, 14, 4], versatile jumping [53], and

loco-manipulation [7, 27, 49]. Building on these advances,

we address humanoid standing-up control, a parallel problem

presenting unique challenges due to its dynamic nature and

the need for precise coordination of multi-stage motor skills

and time-varying contact points [17, 29]. We propose a novel

approach that integrates a multi-critic framework, motion

constraints, and a training curriculum to facilitate real-world

deployment, setting it apart from prior methods.
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Fig. 2: Framework overview. (a) We train policies in simulation from scratch
with multiple critics and motion constraints operationalized by rewards,
smoothness regularization, and action bound (rescaler). (b) The trained polices
can be directly deployed in the real robot to produce standing-up motions.

C. Learning Quadrupedal Robot Standing-up Control

Standing-up control for quadrupedal robots shares similari-

ties with humanoid robots but faces distinct challenges due to

morphological differences, such as quadrupedal designs. Clas-

sical approaches for quadrupedal robots often rely on model-

based optimization and predefined motion primitives [3, 40],

which work well in controlled environments but struggle with

adaptability to diverse postures and real-world uncertainties.

Recent RL-based methods have enabled quadrupedal robots to

recover from falls and transition between poses [23, 30, 51],

using exploratory learning to manage complex dynamics and

environmental interactions. Our work draws inspiration from

these advances, extending them to humanoid robots by ad-

dressing the unique challenges of bipedal standing-up control.

By incorporating posture adaptivity, motion constraints, and a

structured training curriculum, our framework bridges the gap

between quadrupedal and humanoid robot control, enabling

robust standing-up motions across diverse environments.

III. PROBLEM FORMULATION

We formulate the problem of humanoid standing up as a

Markov decision process (MDP; [37]) with finite horizon,

which is defined by the tuple M = ⟨S,A, T ,R, γ⟩. At each

timestep t, the agent (i.e., the robot) perceives the state st ∈ S
from the environment and executes an action at ∈ A produced

by its policy πθ(·|st). The agent then observes a successor

state st+1 ∼ T (·|st, at) following the environment transition

function T and receives a reward signal rt ∈ R. To solve the

MDP, we employ reinforcement learning (RL; [45]), whose

goal learn an optimal policy πθ that maximizes the expected

cumulative reward (return) Eπθ
[
∑T−1

t=0 γtrt] the agent receives

during the whole T -length episode, where γ ∈ [0, 1] is the

discount factor. The expected return is estimated by a value

function (critic) Vφ. In this paper, we adopt Proximal Policy

Optimization (PPO; [42]) as our RL algorithm because of its

stability and efficiency in large-scale parallel training.

1) State Space: We hypothesize that the proprioceptive

states of robots provide sufficient information for standing-

up control in our target environments. We thus include the

proprioceptive information read from robot’s Inertial Mea-

surement Unit (IMU) and joint encoders into the state st =

[ωt, rt, pt, ṗt, at−1, β], where ωt is the angular velocity of

robot base, rt and pt are the roll and pitch, pt and ṗt are

positions and velocities of the joints, at−1 is the last action,

and β ∈ (0, 1] is a scalar that scale the output action. Given

the contact-rich nature of the standing-up task, we implicitly

enhance contact detection by feeding the policy with the

previous five states [15].

2) Action Space: We employ a PD controller for torque-

based robot actuation. The action at represents the difference

between the current and next-step joint positions, with the PD

target computed as pdt = pt + βat, where each dimension of

at is constrained to [−1, 1]. The action rescalar β restricts

the action bounds to regulate the motion speed implicitly.

This is essential to constrain the standing-up motion and will

be discussed in later sections. The torque at timestep t is

computed as:

τt = Kp · (p
d
t − pt)−Kd · ṗt, (1)

where Kp and Kd represent the stiffness and damping coef-

ficients of the PD controller. The dimension of action space

|A| corresponds to the number of robot actuators.

IV. METHOD

This section introduces HoST (Humanoid Standing-up Con-

trol), a reinforcement learning (RL)-based framework for

learning humanoid robots to stand up across diverse postures,

as summarized in Fig. 2. This control task is highly dynamic,

multi-stage, and contact-rich, posing challenges for conven-

tional RL approaches. We first outline the key challenges

addressed in this work in Section IV-A, then describe the core

components of the framework in the following sections.

A. Key Challenges & Overview

1) Reward Design & Optimization (Section IV-B): The

standing-up task involves multiple motor skills: righting the

body, kneeling, and rising. Learning a control policy for these

stages is challenging without explicit stage separation [25, 19].

We address this by dividing the task into three stages and

activating corresponding reward functions at each stage. The

complexity of these skills requires multiple reward functions,

which can complicate policy optimization. To mitigate this,

we employ multi-critic RL [33], grouping reward functions to

balance objectives effectively.

2) Exploration Challenges (Section IV-C): Despite multi-

critic RL, exploration remains difficult due to the robot’s high

degrees of freedom and wide joint limits. Drawing inspiration

from human infant skill development [6], we facilitate explo-

ration by applying a curriculum-based vertical pulling force.

3) Motion Constraints (Section IV-D): With only reward

functions, the agent tends to learn violent and jerky motions,

driven by high torque limits and numerous actuators. Such

behaviors are impractical for real-world deployment. To ad-

dress this, we introduce an action rescaler β to gradually

tighten action output bounds, implicitly limiting joint torques

and motion speed. Additionally, we incorporate smoothness

regularization [20] to mitigate motion oscillation.



Fig. 3: Simulation terrains and real-world scenes. We design four terrains
in simulation: ground, platform, wall, and slope to create initial robot postures
that are likely to be met in real-world environments. Examples of these real-
world environments are shown at the bottom of the figure.

4) Sim-to-Real Gap (Section IV-E): A significant challenge

is the sim-to-real gap. We address this through two strategies:

(1) designing diverse terrains to better simulate real-world

starting postures, and (2) applying domain randomization [48]

to reduce the influence of physical discrepancies between

simulation and real world.

B. Reward Functions & Multiple Critics

Considering the multi-stage nature of the task, we divide the

task into three stages: righting the body hbase < Hstage1, rising

the body hbase > Hstage2, and standing hbase > Hstage2,

indicated by the height of the robot base hbase. Corresponding

reward functions are activated at each stage. We then classify

reward functions into four groups: (1) task reward rtask that

specifies the high-level task objectives, (2) style reward rstyle

that shapes the style of standing-up motion, (3) regularization

reward rregu that further regularizes the motion, and (4)

post-task reward rpost that specify the desired behaviors

after successful standing up. The overall reward function is

expressed as follows:

rt = wtask · rtaskt +wstyle · rstylet +wregu · rregut +wpost · rpostt ,

where w with superscript represents the corresponding reward

weight. Each reward group contains multiple reward functions.

A comprehensive list of all reward functions and groups is

provided in Table VI.

However, we observe that using a single value function

(critic) presents significant challenges in learning effective

standing-up motions. Besides, the large number of reward

functions makes hyperparameter tuning computationally inten-

sive and difficult to balance. To address these challenges, we

implement multiple critics (MuC; [33, 50, 52]) to estimate

returns for each reward group independently, where each

reward group is regarded as a separate task with its own

assigned critic Vφi
. These multiple critics are then integrated

into the PPO framework for optimization as follows:

L(ϕi) = E
[

∥rit + γVφi
(st)− V̄φi

(st+1)∥
2
]

, (2)

where rit is the total reward and V̄ is the target value function

of reward group i. Each critic independently computes its

TABLE II: Domain randomization settings for standing-up control.

Term Value

Trunk Mass U(−2, 5)kg
Base CoM offset U(−0.03, 0.03)m
Link mass U(−0.8, 1.2)× default kg
Fiction U(0.1, 1)
Restitution U(0, 1)
P Gain U(0.85, 1.15)
D Gain U(0.85, 1.15)
Torque RFI [2] U(−0.05, 0.05)× torque limit N·m
Motor Strength U(0.9, 1.1)
Control delay U(0, 100)ms
Initial joint angle offset U(−0.1, 0.1)rad
Initial joint angle scale U(0.9, 1.1)× default joint angle rad

advantage function Aφi
estimated through GAE [41]. These

individual advantages are then aggregated into an overall

weighted advantage: A =
∑

i w
i ·

Aφi
−µAφi

σAφi

, where µAφi

and σAφi
are the batch mean and standard deviation of each

advantage. The critics are updated simultaneously with the

policy network πθ according to:

L(θ) = E [min (αt(θ)At, clip(αt(θ), 1− ϵ, 1 + ϵ)At)] , (3)

where αt(θ) and ϵ are the probability ratio and the clipping

hyperparameter, respectively.

C. Force Curriculum as Exploration Strategy

The primary exploration challenges emerge during the tran-

sition from falling to stable kneeling, a stage that proves

difficult to explore effectively through random action noise

alone. While human infants are likely to learn motor skills with

external supports [6], it inspires us to design environmental

assistance to accelerate the exploration. Specifically, we apply

an upward force F on the robot base, which is largely set

at the start of training. This force takes effect only when the

robot’s trunk achieves a near-vertical orientation, indicating

a successful ground-sitting posture. The force magnitude de-

creases progressively as the robot can maintain a target height

at the end of the episode. See more details in Appendix A.

D. Motion Smoothness

1) Action Bound (Rescaler): Humanoid robots often feature

many DoFs, each equipped with wide position limits and high-

power actuators. This configuration often results in violent

motions after RL training, characterized by violent ground

hitting and rapid bouncing movements. While setting low

action bounds could mitigate this behavior, it might prevent

the robot from exploring effective standing-up motions. To

this end, we introduce an action rescaler β to scale the action

output, implicitly controlling the bound of the maximal torques

on each actuator. This scale coefficient gradually decreases like

vertical force reduction. See more details in Appendix A.

2) Smoothness Regularization: To prevent motion os-

cillation, we adopt the smoothness regularization method

L2C2 [20] into our multi-critic formulation. This method

applies regularization to both the actor-network πθ and critics



TABLE III: Main simulation results. We present a performance comparison between HoST and baselines for the proposed metrics. The means and standard
variation are reported across 5 evaluations, each with 250 testing episodes. ’/’ indicates that the method completely failed on a certain task.

Method
Ground Platform Wall Slope

Esucc ↑ Efeet ↓ Esmth ↓ Eengy ↓ Esucc ↑ Efeet ↑ Esmth ↓ Eengy ↓ Esucc ↑ Efeet ↑ Esmth. ↓ Eengy . ↓ Esucc ↑ Esmth ↑ Esmth ↓ Eengy ↓

(a) Ablation on Number of Critics

HoST-w/o-MuC 0.0 (±0.0) / / / 0.0 (±0.0) / / / 0.0 (±0.0) / / / 0.0 (±0.0) / / /
HoST 99.5 (±0.4) 1.52 (±.10) 2.90 (±.21) 1.35 (±.02) 99.8 (±0.2) 1.16 (±.04) 3.39 (±.39) 0.58 (±.01) 94.2 (±1.2) 1.14 (±.08) 4.66 (±.69) 1.08 (±.02) 98.5 (±0.4) 5.71 (±.24) 5.31 (±.45) 0.83 (±.01)

(b) Ablation on Exploration Strategy

HoST-w/o-Force 0.0 (±0.0) / / / 6.8 (±2.0) 0.12 (±.02) 3.39 (±.40) 1.98 (±.02) 0.0 (±0.0) / / / 0.0 (±0.0) / / /
HoST-w/o-Force-RND 19.8 (±1.2) 0.87 (±.11) 3.13 (±.18) 2.55 (±.03) 99.5 (±0.4) 1.66 (±.11) 3.55 (±.37) 0.78 (±.01) 0.0 (±0.0) / / / 0.0 (±0.0) / / /
HoST 99.5 (±0.4) 1.52 (±0.10) 2.90 (±.21) 1.35 (±.02) 99.8 (±0.2) 1.16 (±.04) 3.39 (±.39) 0.58 (±.01) 94.2 (±1.2) 1.14 (±.08) 4.66 (±.69) 1.08 (±.02) 98.1 (±0.4) 5.71 (±.24) 5.44 (±.45) 0.89 (±.01)

(c) Ablation on Motion Constraints

HoST-w/o-Bound 98.8 (±0.6) 7.27 (±.42) 9.52 (±.25) 3.59 (±.02) 99.4 (±0.8) 6.23 (±.34) 11.65 (±.34) 1.76 (±.03) 99.6 (±0.5) 5.48 (±.70) 8.80 (±.74) 1.73 (±.02) 82.4 (±4.4) 32.22 (±2.5) 16.44 (±.86) 2.62 (±.07)

HoST-Bound0.25 99.8 (±0.4) 1.16 (±.08) 2.75 (±.19) 1.56 (±.01) 99.8 (±0.1) 0.68 (±.05) 3.17 (±.41) 0.79 (±.02) 84.6 (±2.5) 0.42 (±.02) 4.23 (±.71) 1.44 (±.04) 98.0 (±1.4) 2.74 (±.16) 4.67 (±.42) 0.90 (±.02)

HoST-w/o-L2C2 92.3 (±0.7) 2.29 (±.06) 4.05 (±.21) 1.43 (±.01) 99.8 (±0.0) 1.93 (±.07) 4.47 (±.42) 0.92 (±.02) 97.8 (±1.6) 1.43 (±.16) 5.29 (±.70) 1.55 (±.02) 98.8 (±0.8) 3.93 (±.24) 6.32 (±.46) 1.12 (±.02)

HoST-w/o-rstyle 99.2 (±0.5) 1.36 (±.07) 2.83 (±.21) 1.67 (±.03) 82.2 (±3.5) 1.18 (±.08) 3.56 (±.40) 0.67 (±.03) 0.0 (±0.0) / / / 21.4 (±3.2) 8.61 (±.12) 6.49 (±.54) 1.69 (±.05)

HoST 99.5 (±0.4) 1.52 (±.10) 2.90 (±.21) 1.35 (±.02) 99.8 (±0.2) 1.16 (±.04) 3.39 (±.39) 0.58 (±.01) 94.2 (±1.2) 1.14 (±.08) 4.66 (±.69) 1.08 (±.02) 98.5 (±0.4) 5.71 (±.24) 5.31 (±.45) 0.83 (±.01)

(d) Ablation on Historical States

HoST-History0 98.1 (±1.4) 2.11 (±.14) 2.72 (±.22) 1.27 (±.02) 99.5 (±0.5) 1.53 (±.13) 3.29 (±.40) 0.47 (±.01) 64.5 (±1.2) 1.66 (±.04) 4.74 (±.72) 1.66 (±.03) 97.4 (±2.0) 5.20 (±.24) 4.97 (±.48) 0.66 (±.02)

HoST-History2 99.3 (±0.3) 2.25 (±.13) 2.56 (±.19) 1.16 (±.01) 99.4 (±0.5) 0.77 (±.39) 3.27 (±.39) 0.60 (±.01) 93.7 (±1.4) 1.79 (±.08) 4.81 (±.71) 1.22 (±.01) 98.6 (±0.6) 5.06 (±.24) 5.35 (±.44) 0.77 (±.01)

HoST-History5 (ours) 99.5 (±0.4) 1.52 (±.10) 2.90 (±.21) 1.35 (±.02) 99.8 (±0.2) 1.16 (±.04) 3.39 (±.39) 0.58 (±.01) 94.2 (±1.2) 1.14 (±.08) 4.66 (±.69) 1.08 (±.02) 98.6 (±0.4) 5.71 (±.24) 5.31 (±.45) 0.83 (±.01)

HoST-History10 98.8 (±0.8) 1.62 (±.08) 3.02 (±.20) 1.60 (±.02) 99.2 (±0.8) 0.78 (±.05) 3.55 (±.40) 0.71 (±.01) 88.2 (±2.6) 1.24 (±.06) 4.61 (±.72) 1.46 (±.05) 98.6 (±0.8) 3.93 (±.26) 5.41 (±.49) 0.91 (±.01)

Ground Platform Wall Slope

Fig. 4: Motion analysis in simulation. (Left) UMAP visualization of joint-space trajectories demonstrates similar but distinct motion patterns on the terrains
except for the wall. Besides, the trajectories of each terrain are overall consistent, with variation to handle the difference of starting postures. (Right) 3D
trajectory visualizations reveal stable, coordinated hand-foot motion and dynamic posture adaptability, demonstrating effective whole-body coordination and
validating the proposed framework. Point color in the plot indicates motion progression, with lighter shades for earlier and darker for later times.

Vφi
by introducing a bounded sampling distance between

consecutive states st and st+1:

LL2C2 = λπD(πθ(st), πθ(s̄t)) + λV

∑

D(Vφi
(st), Vφi

(s̄t)),

where D is a distance metric, λπ and λV are weight coeffi-

cient, s̄t = st+(st+1− st) ·u is the interpolated state given a

uniform noise u ∼ U(·). We combine this objective function

with ordinary PPO objectives to train our control policies.

E. Training in Simulation & Sim-to-Real Transfer

We use Isaac Gym [31] simulator with 4096 parallel envi-

ronments and the 23-DoF Unitree G1 robot to train standing-

up control policies with the PPO [42] algorithm.

1) Terrain Design: To model the diverse starting postures

in the real world, we design 4 terrains to diversify the starting

postures: (1) ground that is flat, (2) platform that supports

the trunk of robot, (3) wall that supports the trunk of the

robot, and (4) slope with a benign inclination that supports

the whole robot. We visualize these terrains and examples of

their corresponding scenes in the real world in Fig. 3.

2) Domain Randomization: To enhance real-world deploy-

ment, we employ domain randomization [48] to bridge the

physical gap between simulation and reality. The random-

ization parameters, detailed in Table II, include body mass,

base center of mass (CoM) offset, PD gains, torque offset,

and initial pose, following [2, 28]. Notably, the CoM offset is

critical, as it enhances controller robustness against real-world

CoM position noise, which may arise from insufficient torques

or discrepancies between simulated and real robot models.

F. Implementation Details

Our implementation of PPO is based on [39]. The actor and

critic networks are structured as 3-layer and 2-layer MLPs,

respectively. Each episode has a rollout length of 500 steps.

For smoothness regularization, the weight coefficients λπ and

λV are set to 1 and 0.1, respectively. The PD controller

operates at 200 Hz in simulation and 500 Hz on the real robot

to ensure accurate tracking of the PD targets, while the control

policies run at 50 Hz. Additional implementation details and

hardware setup are provided in Appendix A.

V. SIMULATION EXPERIMENTS

A. Experimenrt Setup

1) Evaluation Metrics.: While the design of evaluation

metrics for humanoid standing-up control remains an open

question [44], we aim to make a step forward by proposing

the following metrics:

• Success rate Esucc: The episode is considered successful

if the robot’s base height, hbase, exceeds a target height

htarg and is maintained for the remainder of the episode,

indicating stable standing.
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Fig. 5: Robustness analysis in simulation. Evaluation of control policies under four environmental disturbances demonstrates the robustness of our controllers.
The poor performance of HoST-History1 indicates the importance of historical information for robustness, while HoST-Bound0.25’s high energy consumption
reveals limitations in motion quality under disturbance, demonstrating the effect of curriculum setup of action bound.

Fig. 6: Trade-off analysis in simulation. Trade-offs between motion speed,
smoothness, and energy across terrains. Results show the inverse speed-
smoothness relationship, indicating the importance of constrained motion
speed achieved by our method for real-world deployment.

• Feet movement Efeet: The distance traveled by the robot’s

feet after reaching the target height htarg, indicating stabil-

ity in the standing pose.

• Motion smoothness Esmth: We aggregate the movement of

all joint angles of consecutive control steps to measure the

smoothness of the motion. It indicates that the robot should

keep a smooth motion during the whole episode.

• Energy Eengy: The energy consumed before reaching htarg,

indicating the avoidance of violent standing-up motion.

2) Baselines: To evaluate the effectiveness of the key

design choices in HoST, we compare it against the following

ablated versions:

• Single critic: A baseline using a single critic RL to assess

the impact of multiple critics on motor skill learning.

• Exploration strategy: Baselines with random noise and

curiosity-based rewards (e.g., RND [1]) to evaluate the

effectiveness of the force curriculum.

• Motion constraints: Ablation of action bounds β and

smoothness regularization L2C2 to test their influence on

motion smoothness.

• Historical states: Ablation of the number of historical

states to assess their effect on standing-up motion.

B. Main Results

HoST demonstrates good efficacy in learning standing-up

control across all terrains, as shown in Table III. The effect of

key design choices is summarized as follows:

Multiple critics are crucial for learning motor skills Using

the same reward functions, the performance of the single critic

version of HoST deteriorates significantly across all terrains,

achieving zero success rates. This highlights the importance of

multiple critics in learning and integrating motor skills while

also reducing the hyperparameter tuning burden.

Force curriculum enhances exploration efficiency. Without

the proposed force curriculum, the robot fails to stand up on

all terrains except the platform, as the other terrains require

exploration from a fully fallen state to stable kneeling. While

curiosity-based exploration partially alleviates this challenge,

performance remains unsatisfactory. In contrast, the force

curriculum greatly improves exploration efficiency.

Action bound prevents abrupt motions. While the robot can

learn to stand up without action bounds (HoST-w/o-Bound),

its movements are excessively violent, as indicated by three

performance metrics. With action bounds, HoST demonstrates

smoother motions and higher success rates. Although HoST-

Bound0.25 performs well, its motions are less natural due to

restricted exploration during training.

Smoothness regularization prevents motion oscillation.

Adding smoothness constraints significantly reduces motion

oscillation and increases energy efficiency, validating the ef-

fectiveness of smooth regularization. Further discussion is

presented in Section VI.

Medium history length yields great performance. HoST

with short history length underperforms in contact-rich sce-

narios, such as the Wall terrain. In contrast, a longer history

length improves performance, though it slightly reduces mo-

tion smoothness and increases energy consumption compared

to the default setting.

C. More Analysis

Trajectory analysis (Fig. 4). Following [12], we apply Uni-

form Manifold Approximation and Projection (UMAP; [32])

to project joint-space motion trajectories into 2D, providing a

visualization of the humanoid robot’s motion across diverse



Fig. 7: Snapshot of real robot motion. We directly transfer our policies from simulation to four real-world scenes that correspond to four simulation terrains.
We conclude that (1) our policies can produce smooth and successful standing-up motion in all tested scenes and (2) smooth regularization of L2C2 is
important to avoid oscillation and improve stability.

Fig. 8: Snapshot of outdoor experiments. We test our controllers in diverse outdoor environments, demonstrating smooth motion on unseen terrains such
as grassland, wooden platforms, and stone roads, as well as successful performance on stone platforms and tree-leaning postures.

TABLE IV: Main results for real robot experiments. We report the success rate and motion smoothness to quantitatively compare our methods with the
baseline. The results demonstrate the superiority of our method and the importance of adding smooth regularization into our method.

Method
Ground Platform Wall Slope Overall

Esucc ↑ Esmth ↓ Esucc ↑ Esmth ↓ Esucc ↑ Esmth ↓ Esucc ↑ Esmth ↓ Esucc ↑ Esmth ↓

HoST-w/o-L2C2 5⁄5 2.09 2⁄5 7.85 4⁄5 13.36 0⁄5 2.89 11⁄20 6.54

HoST (ours) 5⁄5 1.83 5⁄5 5.06 5⁄5 7.22 5⁄5 1.94 20⁄20 4.01

terrains. The resulting UMAP figure demonstrates distinct

motion patterns: smooth, controlled movement on flat ground,

while more complex, yet consistent, trajectories emerge on

challenging terrains such as Wall. Additionally, in the 3D

trajectory plots, the coordinated motion of the robot’s hands

and feet reveals significant posture adaptability, as the robot

adjusts its stance dynamically for balance and stability. These

observations highlight the harmonious whole-body coordina-

tion achieved by our controllers and validate the effectiveness

of our proposed framework.

Robustness analysis (Fig. 5). We comprehensively evaluate

the robustness of our learned control policies by simulating

various environmental disturbances. Specifically, we test four

types of external perturbations: CoM position offset in the

sagittal direction, consistent sagittal force, initial joint angle

offset, and random torque dropout ratio. Our results demon-

strate that the policies exhibit remarkable robustness across

all disturbances, achieving high success rates and efficient

motion energy utilization. Notably, the poor performance

of HoST-History1 underscores the critical role of historical

information, which implicitly encodes contact dynamics, in

maintaining robustness. Furthermore, while HoST-Bound0.25

achieves a high success rate, its elevated energy consumption

highlights its limited ability to maintain motion smoothness

under disturbance. These findings validate the robustness of

our policies while indicating the importance of historical

context and curriculum of action bound for robust standing-up.

Trade-off analysis (Fig. 6). We examine trade-offs between

motion speed, smoothness, and energy consumption across

terrains. On the left, motion speed and smoothness exhibit

an inverse relationship: longer fall-to-standing times enhance

smoothness but reduce speed, a trend consistent across all

terrains. On the right, energy consumption increases with fall-

to-standing time, with terrain-specific variations. For exam-



Fig. 9: Sim-to-real analysis. (a) We analyze the effect of each domain randomization term, showing that our randomization terms effectively mitigate the
sim-to-real gap, with the CoM position being particularly influential. (b) To further investigate the sim-to-real gap, we compare the phases of knee and hip
joints that are crucial for standing-up control. The results reveal significant discrepancies in joint velocities, suggesting a sim-to-real gap in joint torques.

Fig. 10: Emergent properties in real robot experiments. (a) our controllers show great robustness to the external force (3kg ball), blocking objects on the
ground, and payload mass up to 12kg (2x mass of trunk. (b) Our controllers also exhibit a surprising ability to recover from very large external forces without
fully falling down. (c) Our policies also exhibit the ability of dynamic balancing over a 15◦ slippery slope without falling down.

TABLE V: Robustness to payload and random torque dropout.

Metric
Payload Mass Torque Dropout Ratio

4kg 6kg 8kg 10kg 12kg 0.05 0.1 0.15 0.2

Esmth ↓ 1.75 1.92 1.86 1.82 1.85 2.00 2.16 2.61 /

Esucc ↑ 3⁄3 3⁄3 3⁄3 3⁄3 2⁄3 3⁄3 3⁄3 3⁄3 0⁄3

ple, the Slope terrain requires higher energy for balancing.

Interestingly, the Wall terrain shows a distinct trend: energy

consumption rises sharply at longer fall-to-standing times

despite low motion speed, suggesting greater energy intensity.

This is likely due to the need for increased force or modified

body mechanics to push against a vertical surface, making

the motion in Wall less energy-efficient than other terrains.

Overall, the results reveal a clear inverse relationship between

motion speed and smoothness, indicating the importance of

constrained motion speed for real-world deployment and vali-

dating the necessity of our approach to achieve such motions.

VI. REAL ROBOT EXPERIMENTS

A. Main Results

We evaluate our method in both laboratory and outdoor en-

vironments corresponding to simulation terrains, using HoST-

w/o-L2C2 as the baseline to examine the effect of smoothness

regularization during deployment.

Smooth regularization improves motions (Fig. 7). Motion

oscillations are observed in all scenes without smoothness reg-

ularization, often leading to standing-up failures. In contrast,

our method produces smooth and stable motions, especially

on 10.5◦ slope. Quantitative results in Table IV strengthen

Fig. 11: Standing stability. Our control policies demonstrate great stability
against external disturbances after successful standing up.

this conclusion, with our approach achieving a 100% success

rate and high motion smoothness across all scenes.1

Generalization to outdoor environments (Fig. 8). We eval-

uate our learned controllers in a variety of outdoor envi-

ronments, testing their ability to generalize to terrains not

encountered during training. On flat ground, the controllers

produce stable, smooth motions across grassland, wooden

platforms, and stone roads. Notably, these terrains were not

included in the training simulations. Additionally, our con-

trollers successfully handle more complex scenarios, including

stone platforms and tree-leaning postures, demonstrating their

adaptability to diverse real-world conditions.

B. Sim-to-real Analysis

In this analysis, we investigate the effect of various domain

randomization terms on the sim-to-real gap, as shown in

Fig. 9. Our results demonstrate that the introduction of these

randomization terms significantly reduces the sim-to-real gap,

particularly with respect to the Center of Mass (CoM) position.

1We select the successful episode to compute smoothness to reflect the
effect of L2C2 regularization better. Due to the unavailability of the height,
we compute the smoothness Esmth within two seconds after starting up.



Phase plot. To further investigate the sources of this gap, we

examine the phase plots of the knee and hip roll joints. These

joints are considered most important for standing-up motions.

We observe a notable discrepancy between simulated and real-

world joint velocities, suggesting a gap in joint torques. This

highlights the need for more accurate actuator modeling to

bridge the sim-to-real gap in humanoid standing-up tasks,

which is also suggested by previous work on quadrupedal

robots [15]. Despite this, our controllers remain effective in

handling these discrepancies, exhibiting joint paths consistent

with the simulated ones.

C. Emergent Properties

Robustness to external disturbance (Fig. 10a). The robust-

ness of our control policies was tested through experiments

involving external disturbances, such as a 3 kg ball impact

and obstructive objects. The controllers maintained stability

even under significant disturbances, like objects disrupting the

robot’s center of gravity. Additionally, the controllers managed

payloads up to 12kg, twice the mass of the humanoid robot’s

trunk. We also quantitatively verify the great robustness of

payload and torque dropout ratio in Table V.

Fall recovery (Fig. 10b). Our controllers also exhibited strong

resilience in recovering from large external forces without

fully falling down. This capability is vital for humanoid robots

navigating unpredictable real-world scenarios with sudden

impacts or balance shifts. Testing showed that, even under

abrupt perturbations, the robots regained their upright posture,

demonstrating the effectiveness of our control strategies in

maintaining dynamic stability.

Dynamic balance (Fig. 10c). We further tested our controllers

on a 15◦ slippery slope, simulating challenging real-world

conditions such as unstable surfaces. The controllers not only

maintained stability on the incline but also adjusted posture

and center of mass in real time to counteract the slippery con-

ditions. These results highlight the adaptability and stability of

our controllers, ensuring humanoid robots can operate safely

on diverse and unpredictable terrains.

Standing stability (Fig. 11). Our controllers demonstrate

strong standing stability, effectively resisting external distur-

bances after successful standing up. This stability is beneficial

for integrating our controllers into existing control systems.

VII. CONCLUSION

Our proposed framework, HoST, advances humanoid

standing-up control by addressing the limitations of existing

methods, which either neglect hardware constraints or rely on

predefined motion trajectories. By leveraging reinforcement

learning from scratch, HoST enables the learning of posture-

adaptive standing-up motions across diverse terrains, ensuring

effective sim-to-real transfer. The multi-critic architecture,

along with smoothness regularization and implicit speed con-

straints, optimizes the controllers for real-world deployment.

Experimental results with the Unitree G1 humanoid robot

demonstrate smooth, stable, and robust standing-up motions

in a variety of real-world scenarios. Looking forward, this

work paves the way for integrating standing-up control into

existing humanoid systems, with the potential of expanding

their real-world applicability.

VIII. LIMITATIONS AND FUTURE DIRECTIONS

While our method demonstrates strong real-world perfor-

mance, we acknowledge several key limitations that should be

addressed in the near future.

Perception of the environment. Although proprioception

alone is sufficient for many postures, some failures were

observed during outdoor tests, such as standing from a seated

position and colliding with surroundings. Integrating percep-

tual capabilities will help address this issue.

More diverse postures. We observe that training with both

supine and prone postures has negatively impacted perfor-

mance due to interference between sampled rollouts. Ad-

dressing this issue could further enhance capabilities like fall

recovery and improve overall system generalization.

Integration with existing humanoid systems. Although in-

tegration with existing humanoid systems is not demonstrated

in this paper, we envision that standing-up control can be

effectively incorporated into current humanoid frameworks to

extend real-world applications.

REFERENCES

[1] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg

Klimov. Exploration by random network distillation. In

International Conference on Learning Representations

(ICLR), 2019.

[2] Luigi Campanaro, Siddhant Gangapurwala, Wolfgang

Merkt, and Ioannis Havoutis. Learning and deploying

robust locomotion policies with minimal dynamics ran-

domization. In 6th Annual Learning for Dynamics &

Control Conference (L4DC), 2024.

[3] Juan Alejandro Castano, Chengxu Zhou, and Nikos

Tsagarakis. Design a fall recovery strategy for a wheel-

legged quadruped robot using stability feature space. In

International Conference on Robotics and Biomimetics

(ROBIO), 2019.

[4] Xuxin Cheng, Yandong Ji, Junming Chen, Ruihan Yang,

Ge Yang, and Xiaolong Wang. Expressive whole-body

control for humanoid robots. In Robotics Science and

Systems (RSS), 2024.

[5] Xuxin Cheng, Jialong Li, Shiqi Yang, Ge Yang, and

Xiaolong Wang. Open-television: Teleoperation with

immersive active visual feedback. arXiv preprint

arXiv:2407.01512, 2024.

[6] Laura J Claxton, Dawn K Melzer, Joong Hyun Ryu,

and Jeffrey M Haddad. The control of posture in

newly standing infants is task dependent. Journal of

Experimental Child Psychology, 2012.

[7] Jeremy Dao, Helei Duan, and Alan Fern. Sim-to-

real learning for humanoid box loco-manipulation. In

International Conference on Robotics and Automation

(ICRA), 2024.



[8] Farbod Farshidian, Michael Neunert, Alexander W Win-

kler, Gonzalo Rey, and Jonas Buchli. An efficient

optimal planning and control framework for quadrupedal

locomotion. In International Conference on Robotics and

Automation (ICRA), 2017.

[9] Zipeng Fu, Qingqing Zhao, Qi Wu, Gordon Wetzstein,

and Chelsea Finn. Humanplus: Humanoid shadowing and

imitation from humans. In Conference on Robot Learning

(CoRL), 2024.

[10] Clément Gaspard, Marc Duclusaud, Grégoire Passault,
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APPENDIX

A. More Experimental Details

Hardware Setup. We conducted our experiments using the

Unitree G1 humanoid robot, which has a mass of 35 kg, a

height of 1.32 m, and 23 actuated degrees of freedom (6 per

leg, 5 per arm, and 1 in the waist). The robot is equipped with

a Jetson Orin NX for onboard computation and uses an IMU

and joint encoders to provide proprioceptive feedback.

Curriculum Setup. The curriculum adjustment condition is

consistent for both the vertical force and action bound: the

head height hhead must reach a target height Hhead by the

end of each episode. Initially, the vertical force F is set to

200 N, and the action bound β is set to 1. Upon reaching the

target head height, the vertical force decreases by 20 N, and

the action bound decreases by 0.02. The lower bounds for the

vertical force and action bound are 0 N and 0.25, respectively.

Stage Division. The first stage involves righting the body,

where we set Hstage1 to 0.45 m. The second stage involves

rising the body, with Hstage2 set to 0.65 m.

Evaluation Protocol. Each policy is evaluated on each terrain

with 5 repetitions of 250 episodes each, totaling 1250 episodes.

We report the mean and standard deviation of performance.



TABLE VI: Reward functions and groups used for learning standing-up control. Reward functions within the same group are independently normalized,
whose associated advantaged functions are estimated via a distinct critic. The bold symbols represent vectors. The H with subscripts represents the threshold
height of standing-up stages defined in Section IV-B. The ftol is a gaussian-style function with a saturation bound, referring to [47, 46] for more details. ’G’
denotes ground, and the letters in ’PSW’ denote platform, slope, and wall, respectively.

Term Expression Weight Description

(a) Task Reward rtask wtask = 2.5 It specifies the high-level task objectives.

Head height ftol (hhead, [1, inf], 1, 0.1) 1 The head of robot head hhead in the world frame.

Base orientation ftol
(

−θzbase, [0.99, inf], 1, 0.05
)

1 The orientation of the robot base represented by projected gravity vector.

(b) Style Reward rstyle wstyle = 1 It specifies the style of standing-up motion.

Waist yaw deviation 1(|qwaist| > 1.4) −10 It penalizes the large joint angle of the waist yaw.

Hip roll/yaw deviation 1(max(|ql,r
hip|) > 1.4) | 1(min(|ql,r

hip|) > 0.9) −10/−10 It penalizes the large joint angle of hip roll/yaw joints.

Knee deviation 1(max(|ql,r
knee|) > 2.85) | 1(min(|ql,r

knee|) < −0.06)
−0.25(G)

−10(PSW )
It penalizes the large joint angle of knee joints.

Shoulder roll deviation 1(max(|qlshoulder|) < −0.02) | 1(min(|qrshoulder|) > 0.02) −2.5 It penalizes the large joint angle of shoulder roll joint.

Foot displacement exp
(

−2× ∥qxy
base − q

xy
foot∥

2.clip(0.3, inf)
)

× 1(hbase > Hstage2) 2.5/2.5 It encourages robot CoM locates in support polygon, inspired by [11].

Ankle parallel (var(qz
left ankle) + var(qz

right ankle))/2 < 0.05 20 It encourages the ankles to be parallel to the ground via ankle keypoints.

Foot distance ∥ql
feet − qr

feet∥
2 > 0.9 −10 It penalizes a far distance between feet.

Feet stumble 1(∃i, |Fxy
i | > 3|F z

i |)
0(G)

−25(PSW )
It penalizes a horizontal contact force with the environment.

Shank orientation ftol(mean(θl,r
shank[2]), [0.8, inf], 1, 0.1)× 1(hbase > Hstage1) 10 It encourages the left/right shank to be perpendicular to the ground.

Ankle parallel (var(qz
left ankle) + var(qz

right ankle))/2 < 0.05 20 It encourages the ankles to be parallel to the ground via ankle keypoints.

Base angular velocity exp(−2× ∥ωxy
base∥

2)× 1(hbase > Hstage1) 1 It encourages low angular velocity of the during rising up.

(c) Regularization Reward rregu wregu = 0.1 It specifies the regulariztaion on standing-up motion.

Joint acceleration ∥p̈∥2 −2.5e−7 It penalizes the high joint accelrations.

Action rate ∥at − at−1∥2 −1e−2 It penalizes the high changing speed of action.

Smoothness ∥at − 2at−1 + at−2∥2 −1e−2 It penalizes the discrepancy between consecutive actions.

Torques ∥τ∥2 −2.5e−6 It penalizes the high joint torques.

Joint power |τ∥ṗ|T −2.5e−5 It penalizes the high joint power

Joint velocity ∥ṗ∥22 −1e−4 It penalizes the high joint velocity.

Joint tracking error ∥pt − ptargett ∥2 −2.5e−1 It penalizes the error between PD target (Eq. (1)) and actual joint position.

Joint pos limits
∑

i[(pi − pLower
i ).clip(−inf, 0) + (pi − pHigher

i ).clip(0, inf)] −1e2 It penalizes the joint position that beyond limits.

Joint vel limits
∑

i[(|ṗi| − ṗLimit
i ).clip(0, inf)] −1 It penalizes the joint velocity that beyond limits.

(d) Post-task Reward rpost wpost = 1 It specifies the desired behaviors after a successful standing up.

Base angular velocity exp(−2× ∥ωxy
base∥

2)× 1(hbase > Hstage2) 10 It encourages low angular velocity of robot base after standing up.

Base linear velocity exp(−5× ∥vxy
base∥

2)× 1(hbase > Hstage2) 10 It encourages low linear velocity of robot base after standing up.

Base orientation exp(−5× ∥θxy
base∥

2 × 1(hbase > Hstage2) 10 It encourages the robot base to be perpendicular to the ground.

Base height exp(−20× ∥hbase − htarget
base ∥2 × 1(hbase > Hstage2) 10 It encourages the robot base to reach a target height.

Upper Body Posture exp(−0.1× ∥pupper − ptargetupper∥
2)× 1(hbase > Hstage2) 10 It encourages the robot to track a target upper body postures.

Feet parallel exp(−20× |hl
feet − hr

feet|.clip(0.02, inf))× 1(hbase > Hstage2) 2.5 In encourages the feet to be parallel to each other.

The target standing-up height is set to 0.6 m for the slope

terrain and 0.7 m for all other terrains during evaluation.

Robustness Test. The CoM bias and sagittal force are set on

the x-axis direction of the robot. The initial joint angle offset

is applied to all joints of the robot. The random torque dropout

is applied to each simulation step (200Hz), where the torques

are set to zero if being dropout.

B. More Implementation Details

PD Controller. In simulation, the stiffness values are set as

100 for the upper body, 40 for the ankle, 150 for the hip, and

200 for the knee. The damping values are set to 4 for the

upper body, 2 for the ankle, 4 for the hip, and 6 for the knee.

High stiffness values for the hip and knee are used due to the

high torque demands during the standing-up process. During

real-world deployment, we observe a significant torque gap

between simulation and reality (see Fig. 9). Thus, the stiffness

of the hip and knee are adjusted to 200 and 275, respectively.

Reward Functions. We present the complete set of re-

ward functions and their detailed descriptions in Table VI.

Several regularization reward terms are adapted from prior

work [21, 28, 13]. Additionally, we incorporate a tolerance

reward, ftol(i, b,m, v), as defined in [47, 46]. This reward

is computed as a function of an input value i, which is

constrained by three parameters: bounds b, margin m, and

value v. The bounds b define the region where the reward is

1 if i lies within the bounds. Outside this region, the reward

smoothly decreases according to a Gaussian function, reaching

the value v at a distance determined by the margin m.

PPO Implementation. Our PPO implementation follows the

framework outlined in [39]. The actor network consists of

a 3-layer MLP with hidden dimensions [512, 256, 128],

while each critic network is a 2-layer MLP with hidden

dimensions [512, 256]. Each iteration includes 50 steps per

environment, with 5 learning epochs and 4 mini-batches per

epoch. The discount factor γ is set to 0.99, the clip ratio

is set to 0.2, and the entropy coefficient is 0.01. The multi-

critic architecture is based on previous work [33], where each

advantage function is independently calculated and normalized

within its corresponding reward group.

Baseline Implementations. HoST-w/o-MuC represents a

baseline with a single value network, essentially a standard

RL implementation. HoST-w/o-Force-RND removes the ver-

tical force curriculum and introduces an RND reward with a

coefficient of 0.2 [1]. HoST-Bound0.25 uses a fixed action

bound of β = 0.25 without a curriculum. HoST-w/p-rstyle

eliminates all style-related reward functions. Lastly, HoST-

History modifies the history length of states while keeping

other implementations unchanged.

Terrains. The heights of the platforms range from 20cm to

92cm. The slope inclination varies from approximately 1° to

14°. The wall inclination spans from approximately 14° to 84°.
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